I-CISK Budapest Living Lab

Thermal Image Analysis Script

by IDEAS Science (Béla Mihalik and Gyorgyi Bela)
version: 20/03/2025

Purpose

This script processes thermal orthophotos (top-down images) together with a color palette to
estimate the temperature of different surfaces (e.g., roofs, streets). It clusters these surfaces
by color/material and calculates statistical information about their temperatures. Finally, it
generates graphs to illustrate the distribution of temperatures across different surface
classes.

Table of Contents

Overview of Processing Steps
Detailed Explanation by Code Section
Script Outputs

Usage Example

System Requirements

Conclusion

2 i

Overview of Processing Steps
1. Reading and Validating Input

- Accepts paths for:
- Orthophoto (visual spectrum image).
- Thermal photo.
- Structure mask (buildings, streets).
- Color palette (vertical strip of colors — temperature range).
- Takes numeric parameters for temperature range, shadow threshold, and
number of clusters.

2. Preprocessing and Masking

- Ensures uniform image dimensions (resizing if needed).
- Extracts building and street masks from structure_mask.
- Brightness normalization for orthophoto areas (roofs, streets).

3. Shadow Processing (Optional)

- Identifies shadowed pixels on roofs via brightness thresholding.
- Excludes those shadowed regions from further analysis.



I-CISK Budapest Living Lab

4. Thermal-to-Temperature Conversion

- Uses a color palette image to map each thermal pixel to a temperature value.
- Saves this “temperature map” into a cache file (. npy) to avoid recalculating.

5. Automatic Color Clustering (K-Means)
- Clusters the normalized orthophoto pixels into num_clusters classes for
roofs, and similarly for streets.
- Each class roughly corresponds to a color/material group.
6. Statistical Computation
- For each cluster: calculates min, max, mean, median, std. dev. of
temperature.
- Maps cluster color — descriptive name.
7. Graph Generation
- Temperature Distribution: Bar chart of mean temperature (with error bars for
std. dev.).
- Coverage: Shows coverage percentage of each class and their mean
temperatures.

8. Optional Debug Outputs

- Saves intermediate images (masks, normalized regions, shadow visuals)
when --save-debug-images is specified.

9. Results and Logging

- Logs steps, warnings (e.g., image resizing).
- Saves the final graphs (PNG) and optionally debug images.

Detailed Explanation by Code Section

1. Imports and Initial Setup

import os
import argparse
import time

import logging



I-CISK

Budapest Living Lab

from datetime import datetime

import hashlib

import math

import cv2

import numpy as np

import matplotlib.pyplot as plt

from sklearn.cluster import KMeans

from scipy.spatial import distance

- Key libraries:

OpenCV (cv2) for image I/O and operations.
numpy for array handling.

matplotlib for plotting.
sklearn.cluster.KMeans for color clustering.
scipy.spatial.distance for distance metrics.
tqdm (used later) for progress bars.

2. Color Classification Functions

- rgb_to_hsv_roof_name(rgb)
Converts an RGB triplet — HSV, then infers a descriptive roof category (e.g.,
"Asphalt-Black", "Burgundy"”, "Cardinal-Red") based on hue, saturation, value, and an
RGB standard deviation metric.

- rgb_to_hsv_street_name(rgb)
Similar logic but labels street/road surfaces according to standard marking or surface
types (e.g., "Yellow Centerline", "Fresh Asphalt", "Weathered Concrete").

- hsv_to_rgb(hsv)
Converts an HSV triplet (scaled in script) back to RGB (0-255).

- rgb_to_gray(rgb)
Approximates brightness (grayscale value) from an RGB color. Used to order clusters
from darkest to lightest (albedo).



I-CISK Budapest Living Lab

3. Image Processing Functions

- normalize_brightness(img)
Finds the max brightness in non-zero pixels and scales them so that max becomes
255. Leaves zero (or fully black) areas unchanged.

- create_mask_from_structure(structure_mask, color_range_bgr,

name)
Creates a binary mask for pixels within a specified BGR color range in
structure_mask. Useful for extracting regions like buildings or streets.

4. Shadow Processing

- process_shadows(orthophoto, roof_mask, shadow_level)
Identifies shadowed pixels (under a brightness threshold) in roof regions.

- create_shadows_visualization(ortho_photo, shadow_mask)
Overlays a semi-transparent blue color where shadow_mask is present for
visualization.

5. Thermal Image Processing

- thermal_to_temperature(thermal_img, color_palette,
lowest_temp, highest_temp)
Converts each pixel in the thermal image to a temperature by:
1. Extracting a vertical palette strip from color_palette.
2. Mapping each pixel’s color to the nearest color in the palette (in RGB space).
3. Assigning the corresponding temperature from a linear scale between
lowest_temp and highest_temp.

6. Clustering and Class Masks

- create_automatic_class_masks(normalized_orthophoto_masked,
num_clusters)
Runs K-Means to create num_clusters classes from the non-zero orthophoto

pixels. Returns:
- Alist of binary masks, one per class.
- The RGB cluster center for each class.

7. Statistical Computations

- calculate_temperature_statistics(temperature_map, class_masks,
class_color_centers, color_to_name_func)
For each class (mask), gathers all pixel temperatures and computes:

- min, max, mean, median, std. dev.



I-CISK Budapest Living Lab

- cluster color name (using color_to_name_func like
rgb_to_hsv_roof_name).
- logs the results.

- calculate_structure_statistics(structure_mask)
Measures coverage of buildings and streets by:

1. Counting all colored pixels.
2. Creating building/street masks, counting each separately.
3. Returning % coverage.

8. Creating Graphs

- create_temperature_graph(class_temp_stats, mask_stats,
scenario_name, output_name)

Creates a bar chart of mean temperatures per class (with error bars for std. dev.),
labeling min/max, pixel counts, etc. Saves to a PNG file.

- create_coverage_graph(class_temp_stats,
percentage_all_classes, scenario_name, output_name)
Shows each class’s coverage percentage (with a bar) along with mean temperatures.
Also saves to a PNG file.

- calculate_possible_temperature_rediction(class_temp_stats,
scenario_name)
Logs a rough estimate of how much the average temperature might be reduced if
higher-temperature classes were replaced by the class with the lowest mean
temperature.

9. Main Processing Flow (main())

1. Argument Parsing
Reads arguments like --orthophoto, --thermalphoto,
--lowest-temperature, --num-clusters, etc.

2. Image Reading & Dimension Handling
Reads the four images. Resizes thermal and structure mask to match the orthophoto
if needed.

3. Mask Extraction
Uses create_mask_from_structure to isolate building (blue) and street (yellow)
areas.

4. Applying Masks & Normalizing
Focuses on building/street regions in both orthophoto and thermal image,
normalizing brightness of the orthophoto sections.



I-CISK

10.

Budapest Living Lab

Shadow Removal (if shadow_level > 0)
Identifies roof shadows and removes them from further processing.

Temperature Map Generation

- Either loads a cached . npy (if it exists) or computes a new temperature map
via thermal_to_temperature.
- Uses a hash to detect changes in input images or parameters.

Analysis for Roofs
- K-Means cluster the normalized building region.
- Compute temperature stats.
- Generate temperature distribution and coverage graphs.
- Log possible temperature reduction scenario.

Analysis for Streets

- Repeat clustering and stats for the street region.
- Generate graphs and logs for streets.

Debug Outputs
- If --save-debug-images is on, saves intermediate images.
Final Output

Saves generated graphs for both roofs and streets.
Displays logs in console.

Script Outputs

Log Messages in console (or whichever logging handler is configured).

Cached Temperature Map (in cache/ directory) with a unique .npy filename based
on a hash.

Graphs as PNG images:

- Temperature distribution graphs (e.g.,
_stat_for_roof_temperatures.png,
_stat_for_streets_stat_for_roof_temperatures.png).

- Coverage graphs (e.g., _stat_for_roof_coverage.png,
_stat_for_streets_stat_for_roof_coverage.png).

Optional Debug Images:



I-CISK Budapest Living Lab

- Various intermediate images like masked orthophoto, masked thermal,
shadow visualization, etc.

Usage Example
python3 thermal_analysis.py \

--orthophoto ortho_example.png \
--thermalphoto thermal_example.png \
--structuremask structure_mask.png \
--colorpalette palette.png \
--lowest-temperature 15\
--highest-temperature 40 \
--shadow-level 30 \
--num-clusters 5\
--output results \
--scenario-name "Downtown Survey" \
--save-debug-images
- Reads the specified images.
- Treats the palette range as 15°C to 40°C.
- Considers pixels below 30% brightness (in roofs) to be shadow.
- Clusters each region into 5 classes (for roofs and streets separately).

- Outputs graphs labeled with "Downtown Survey" in their titles.
- Saves debug images, if requested.

System Requirements

- Python 3.x

- Required Packages:
- opencv-python (cv2)
- numpy
- matplotlib



I-CISK Budapest Living Lab

- scikit-learn
- scipy
- tqdm

Install with:

pip install opencv-python numpy matplotlib scikit-learn scipy tqdm

Conclusion

This script provides a complete pipeline for analyzing thermal orthophotos in conjunction
with standard orthophotos and structure masks. It identifies, clusters, and compares the
temperature of various urban surfaces (buildings, streets), and produces detailed statistics
and visualizations. The features—shadow exclusion, brightness normalization, color-based
classification, caching, and robust logging—make it well suited to repeated large-scale
analysis.



	Thermal Image Analysis Script 
	Table of Contents 
	Overview of Processing Steps 
	Detailed Explanation by Code Section 
	1. Imports and Initial Setup 
	2. Color Classification Functions 
	3. Image Processing Functions 
	4. Shadow Processing 
	5. Thermal Image Processing 
	6. Clustering and Class Masks 
	7. Statistical Computations 
	8. Creating Graphs 
	9. Main Processing Flow (main()) 

	Script Outputs 
	Usage Example 
	System Requirements 
	Conclusion 


